Naar homepage     
Chronische Cerebro-Spinale Veneuze Insufficiëntie
Aanmelden op het CCSVI.nl forum
Lees Voor (ReadSpeaker)    A-   A+
Over CCSVI.nl | Zoeken | Contact | Forum
CCSVI.nl is onderdeel van de
Franz Schelling Website
meer informatie
  
Wednesday, June 4, 2014 3:38 PM | Venöse Multiple Sklerose, CVI & SVI, CCSVI Volg link
Consequences of Magnesium Deficiency on the Enhancement of Stress Reactions; Preventive and Therapeutic Implications (A Review)

Mildred S. Seelig, MD, MPH, Master ACN, Department of Nutrition, Schools of
Public Health and Medicine, University of North Carolina, Chapel Hill

ABSTRACT
Stress intensifies release of catecholamines and corticosteroids, that increase survival of normal animals when their lives are threatened. When magnesium (Mg) deficiency exists, stress paradoxically increases risk of cardiovascular damage including hypertension, cerebrovascular and coronary constriction and occlusion, arrhythmias and sudden cardiac death (SCD). In affluent societies, severe dietary Mg deficiency is uncommon, but dietary imbalances such as high intakes of fat and/or calcium (Ca) can intensify Mg inadequacy, especially under conditions of stress. Adrenergic stimulation of lipolysis can intensify its deficiency by complexing Mg with liberated fatty acids (FA). A low Mg/Ca ratio increases release of catecholamines, which lowers tissue (i.e. myocardial) Mg levels. It also favors excess release or formation of factors (derived both from FA metabolism and the endothelium), that are vasoconstrictive and platelet aggregating; a high Ca/Mg ratio also directly favors blood coagulation, which is also favored by excess fat and its mobilization during adrenergic lipolysis. Auto-oxidation of catecholamines yields free radicals, which explains the enhancement of the protective effect of Mg by anti-oxidant nutrients against cardiac damage caused by beta-catecholamines. Thus, stress, whether physical (i.e. exertion, heat, cold, trauma - accidental or surgical, burns), or emotional (i.e. pain, anxiety, excitement or depression) and dyspnea as in asthma increases need for Mg. Genetic differences in Mg utilization may account for differences in vulnerability to Mg deficiency and differences in body responses to stress.

“... CONCLUDING COMMENTS

Stress-intensification of Mg inadequacy may well be to blame for the SCD associated with stress, even in young healthy athletes. This report has evaluated data implicating high Ca/Mg ratios in increased adverse responses to stress. Stress hormone intensification of Mg loss, and stimulation of their secretion by high Ca/Mg constitute a self-reinforcing loop. High Ca/Mg ratios lead to increased blood coagulation and vasotonus, which are also influenced by prostaglandins and fibronectin, that are affected by low Mg levels. It is provocative that pharmacologic doses of Mg, are therapeutic in conditions that are intensified by loss of Mg, and in which Mg inadequacy might well be a contributory factor. High serum Mg levels, such as are required to control eclampsia, have been shown to be effective adjunctive therapy in bronchial asthma unresponsive to standard therapy; prompt high dosage i.v.Mg has prevented or reduced the incidence of post-AMI complications and significantly improved survival in double-blind trials ....”

read more/source/full paper: www.mgwater.com/conseq.shtml


Magnesium Deficiency and Stress Reactions; Preventive and Therapeutic Implications
www.mgwater.com
Stress increases need for magnesium. Genetic differences in magnesium utilization may account for differences in body responses to stress.