Naar homepage     
Chronische Cerebro-Spinale Veneuze Insufficiëntie
Aanmelden op het CCSVI.nl forum
Lees Voor (ReadSpeaker)    A-   A+
Over CCSVI.nl | Zoeken | Contact | Forum
CCSVI.nl is onderdeel van de
Franz Schelling Website
meer informatie
  
Monday, April 20, 2015 11:25 PM | Venöse Multiple Sklerose, CVI & SVI, CCSVI Volg link
Insulin and Its Metabolic Effects, by Ron Rosedale, M.D
-- or understand the connection between Magnesium deficiency, constricted blood vessels & insulin resistance a bit better.

“...A less known fact is that insulin also stores magnesium. But if your cells become resistant to insulin, you can't store magnesium so you lose it through urination.
Intracellular magnesium relaxes muscles. What happens when you can't store magnesium because the cell is resistant? You lose magnesium and your blood vessels constrict.
This causes an increase in blood pressure and a reduction in energy since intracellular magnesium is required for all energy producing reactions that take place in the cell.
But most importantly, magnesium is also necessary for the action of insulin and the manufacture of insulin. When you raise your insulin, you lose magnesium, and the cells become even more insulin resistant. Blood vessels constrict and glucose and insulin can't get to the tissues, which make them more insulin resistant, so the insulin levels go up and you lose more magnesium. This is the vicious cycle that begins even before you were born.
Insulin sensitivity starts to be determined the moment the sperm combines with the egg. If a pregnant woman eats a high-carbohydrate diet, which turns into sugar, animal studies have shown that the fetus will become more insulin resistant.
Worse yet, researchers have used sophisticated measurements and found that if that fetus happens to be a female, the eggs of that fetus are more insulin resistant. Does that mean it is genetic? No, you can be born with something and it doesn't mean that it is genetic. Diabetes is not a genetic disease as such. You can have a genetic predisposition, but it should be an extremely rare disease....”

“...Insulin is a so-called mitogenic hormone. It stimulates cell proliferation and cell division. If all of the cells were to become resistant to insulin we wouldn't have that much of a problem, but all of the cells don't become resistant.
Some cells are incapable of becoming very resistant. The liver becomes resistant first, then the muscle tissue, then the fat. When the liver becomes resistant it suppresses the production of sugar.
The sugar floating around in your body at any one time is the result of two things, the sugar that you have eaten and how much sugar your liver has made. When you wake up in the morning it is more of a reflection of how much sugar your liver has made. If your liver is listening to insulin properly it won't make much sugar in the middle of the night. If your liver is resistant, those brakes are lifted and your liver starts making a bunch of sugar, so you wake up with a bunch of sugar.
The next tissue to become resistant is the muscle tissue. What is the action of insulin in muscles? It allows your muscles to burn sugar for one thing. So if your muscles become resistant to insulin it can't burn that sugar that was just manufactured by the liver. So the liver is producing too much, the muscles can't burn it, and this raises your blood sugar.
Well the fat cells become resistant, but not for a while as it takes them longer. So for a while your fat cells retain their sensitivity.
What is the action of insulin on your fat cells? To store that fat. It takes sugar and it stores it as fat. So until your fat cells become resistant you get fat. As people become more and more insulin resistant, their weight goes up and up.
But eventually they plateau. They might plateau at 300 pounds, 220 pounds, 150 pounds, but they will eventually plateau as the fat cells protect themselves and become insulin resistant.
As all these major tissues, your liver, muscles and fat, become resistant your pancreas is putting out more insulin to compensate, so you are hyperinsulinemic and you've got insulin floating around all the time, 90 units or more.
But there are certain tissues that aren't becoming resistant such as your endothelium; the lining of the arteries doesn't become resistant very readily, so all that insulin is affecting the lining of your arteries.
If you drip insulin into the femoral artery of a dog, there was a Dr. Cruz who did this in the early '70s by accident, the artery will become almost totally occluded with plaque after about three months.
The contra lateral side was totally clear; just contact of insulin in the artery caused it to fill up with plaque. That has been known since the '70s and has been repeated in chickens and in dogs; it is really a well-known fact that insulin floating around in the blood causes a plaque build-up. They didn't know why, but we know that insulin causes endothelial proliferation. This is the first step as it causes a tumor, an endothelial tumor.
Insulin also causes the blood to clot too readily and causes the conversion of macrophages into foam cells, which are the cells that accumulate the fatty deposits. Every step of the way, insulin is causing cardiovascular disease. It fills the body with plaque, it constricts the arteries, it stimulates the sympathetic nervous system, it increases platelet adhesiveness and coaguability of the blood.
Insulin is a part of any known cause of cardiovascular disease. It influences nitric oxide synthase; you produce less nitric oxide in the endothelium. We know that helps mediate vasodilatation and constriction, i.e. angina....”
learn more/full paper: http://drrosedale.com/Insulin_and_Its_Metabolic_Effects#axzz3Xsz3zxJY


Welcome to Dr.Rosedale's Website
drrosedale.com
This information was ground breaking and way before its time, and to this day this information is still new to the vast majority of doctors in 2011. Dr. Rosedale was one of the first to speak throughout the world detailing the critical importance of insulin to health and disease. The transcription o…